<< Содержание < Предыдущая Следующая >
8.2. Геометрична інтерпретація задачі нелінійного програмування
Геометрично цільова функція (8.1) визначає деяку поверхню, а обмеження (8.2)—(8.3) — допустиму підмножину n-вимірного евклідового простору. Знаходження оптимального розв’язку задачі нелінійного програмування зводиться до відшукання точки з допустимої підмножини, в якій досягається поверхня найвищого (найнижчого) рівня.
Якщо цільова функція неперервна, а допустима множина розв’язків замкнена, непуста і обмежена, то глобальний максимум (мінімум) задачі існує.
Найпростішими для розв’язування є задачі нелінійного програмування, що містять систему лінійних обмежень та нелінійну цільову функцію. В цьому разі область допустимих розв’язків є опуклою, непустою, замкненою, тобто обмеженою.
Розглянемо приклад геометричного способу розв’язування задачі нелінійного програмування.
Знайти мінімальне і максимальне значення функції:

за умов:

.
Розв’язання. Область допустимих розв’язків утворює чотирикутник АВСD (рис. 8.1). Геометрично цільова функція являє собою коло з центром у точці М (2; 2), квадрат радіуса якого . Це означає, що її значення буде збільшуватися (зменшуватися) зі збільшенням (зменшенням) радіуса кола. Проведемо з точки М кола різних радіусів. Функція Z має два локальних максимуми: точки В (0; 6) і С (8; 0). Обчислимо значення функціонала в цих точках:
,
.
Оскільки , то точка С (8; 0) є точкою глобального максимуму.
Очевидно, що найменший радіус , тоді:
. Тобто точка М є точкою мінімуму, оскільки їй відповідає найменше можливе значення цільової функції.
Зазначимо, що в даному разі точка, яка відповідає оптимальному плану задачі (мінімальному значенню функціонала), знаходиться всередині багатокутника допустимих розв’язків, що в задачах лінійного програмування неможливо.
Знайти мінімальне значення функції:

за умов:

.
Розв’язування. У даному прикладі множина допустимих розв’язків складається з двох окремих частин, необмежених зверху (рис. 8.2). Цільова функція аналогічно попередньому випадку є колом з центром у точці М (4; 4). Функція Z має два локальних мінімуми: в точці А ( ), і в точці В ( ).
Значення функціонала в цих точках однакове і дорівнює:
.
Отже, маємо два альтернативні оптимальні плани.
Даний приклад ілюструє ще одну особливість задач нелінійного програмування: на відміну від задач лінійного програмування багатогранник допустимих розв’язків задачі нелінійного програмування не обов’язково буде опуклою множиною.
Наведемо основні особливості задач нелінійного програмування, що зумовлюють необхідність застосування відповідних методів їх розв’язання.
|